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1 
Recording The Details In A Permanent Notebook 

 
 
 
1.1 Why is the laboratory notebook important? 
 
An essential part of the process of learning to do experimental physics is the development of 
your skill at completely and truthfully documenting an experiment, so that you will be able to 
share the results of your work convincingly with the scientific community. Although the 
laboratory notebook is primarily for your own use, as a record of what you have done, it is 
worth reminding ourselves that experimental physics is a communal endeavor, an important 
purpose of which is to add to our body of knowledge about how the physical universe works. 
Whether you work in an industrial laboratory, or in an academic setting, the outcome of your 
work is usually reported in some form, either written or oral, to your peers or to those who 
funded your work. Thus, recording all the details of your experiment in an orderly fashion, as 
the work unfolds, will make it easier for you to recall the essential details when it comes time 
to report the results. If you make an important discovery, a well-kept lab notebook may also 
serve as a convincing legal document, which could be useful in obtaining patent agreements, 
Nobel prizes, etc. 
 
 
1.2 What are the elements of a good laboratory notebook? 
 
To produce a complete and convincing document of your experiment requires first that you 
keep records in the laboratory notebook as the experiment progresses. A good lab notebook 
should be like a journal or diary, in so far as it contains not just tables of data but your 
thoughts on what you are doing and why you are doing it. It is absolutely essential that you 
record all of your data in the notebook as the measurements are made. You should also be 
liberal in the use of written comments throughout the notebook which will help you (and the 
grader!) to understand what you have done. 
 
A second essential element of a complete notebook is that it should contain all details of data 
analysis, including any graphs of data and calculations of experimental errors. The notebook 
should show clearly how you got from the raw measurements to the final results. All 
important equations should be written out, and a sample calculation of each type should be 
shown. Graphs may be produced by computer, but must be permanently attached into the 
notebook (with staples, tape, or glue) and clearly cross-referenced to the appropriate data 
tables, so that the reader may understand what data are being plotted. 
 
Since all measurements have some degree of uncertainty, and all experimental results are 
derived from measurements, it follows that all experimental results will have some degree of 
uncertainty. As part of the data analysis, your notebook must also show clearly how you 
determined the uncertainty in the final results. This important process in discussed in more 
detail in Chapter 2. 
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Finally, you should get into the habit of collecting your thoughts at the end of each lab 
session by writing a brief summary of what you have accomplished and what you plan to do 
next. Just as a daily review of lecture notes makes it easier to study for an exam, the daily 
summary of your lab work should help you stay on top of the analysis and will make it easier 
to prepare a report. Whether or not a formal report is required, you should devote the last 
page or so in your notebook to a discussion of the important results of the experiment. Tell 
what the results mean and what conclusions can be drawn from them. 
 
 
 
1.3 Some ground rules for record keeping 
 
 

a. Produce a truthful record of your experiment 
 
 

• Honesty has its benefits: First and foremost your lab notebook must be an honest 
reflection of the work that you did, recorded at the time that you actually did the 
work.  All students in this course are required to be present in the lab for all of the 
experiments, and to record their own data.  There is a very pragmatic aspect to 
truthfulness in record keeping. It helps to verify your claim to a particular 
discovery and ensure such things as patent rights. Standard procedure in industry 
is for you to sign your notebook entries and have them countersigned and dated 
by a co-worker on a daily basis. Thus the laboratory notebook may function as a 
legal document, as well as being a record of your work for your own information. 

 
 
• Dishonesty is not tolerated: The scientific community demands that its members 

do their work with integrity.  Under no circumstances will any student be allowed 
to copy data from another student without actually doing the experiments.  If you 
have any doubts about the serious problems that can arise when lab notes are 
allegedly not kept with integrity, see the story which appeared on the front page 
on the New York Times on December 3rd, 1991, and related articles which 
appeared in the ‘Science Times’ section of the New York Times on May 15, 1990 
and June 4, 1992 regarding allegations of fraud which led to the resignation of a 
university president. 
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b. Produce a permanent record of your experiment 
 

• Use bound notebooks: In this and other physics lab courses at Carnegie 
Mellon you are required to keep records of your experiments in bound 
notebooks. It is not acceptable to keep records in spiral or loose leaf 
notebooks, from which it is tempting to tear a page out if you make a mistake.  

 
• Write in ink; record everything; erase nothing: The lab notebook should be 

a permanent record of everything you did in the lab. If you make a mistake, 
just cross it out lightly and note the reason for doing so. Never erase, 
obliterate, or tear out anything from the notebook. You should develop this 
habit for two reasons: first, to ensure verifiable intellectual integrity (e.g. you 
can’t claim to have made a new discovery simply by omitting half of your 
data) and second, you may find that you were right in the first place and want 
to retrieve the data. 

 
 

• No loose sheets of paper:  It is not acceptable to keep records on loose sheets 
of paper, which may be lost or misplaced easily. The instructors of this course 
reserve the right to confiscate any loose sheets of paper that the student may 
be using instead of a proper lab notebook.  Graphs, computer printouts, and 
other important information relevant to the experiment should be attached 
permanently into the notebook using staples, tape, or glue, and not simply 
stuffed between the pages. 

 
 

c. Produce a complete and convincing record of your experiment 
 
 

• Write legibly and with sufficient detail: In order for a piece of research to 
be convincing, it must be understandable and reproducible. To that end, your 
notebook must contain enough information, written with sufficient clarity, for 
someone who is familiar with your field of work to be able to follow your 
notes and understand (and if necessary, reproduce) what you did. Thus, the 
notebook must be legible, but it is not expected to be perfectly neat and free of 
(corrected) mistakes. 

 
 

• Be concise in discussion of the theory: In order to be a complete record of 
your experiment, it is not necessary for the notebook to include every word 
that was ever written on the underlying theory. Be concise.  Include just 
enough theory to motivate your experiment.  If you feel that additional 
information is needed, you can include a reference to a primary source. 
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• Keep your own independent notes: Each individual must keep his or her 
own notebook for each experiment, and to write all of the original data in 
his/her notebook by hand. We want to encourage cooperation and teamwork 
in the laboratory, but we do not want to encourage you to become completely 
dependent on your lab partner to have written down all the important 
information that you did not record. It is not acceptable for one partner to be 
the record-keeper for the team. Nor is it acceptable for the other partner to put 
a computer print-out of the data in his/her notebook and to write “see partner’s 
notebook for the original data.” This applies not only to original data, but also 
to analysis, graphs, error calculations, summaries, and conclusions.  Do all of 
your own work in your own notebook. 

 
 

• Be sure that you have taken enough data: In order to be convincing, the 
conclusions which you reach must be supported by the data. To be sure that 
you have enough data to support your conclusions, you must analyze the data 
as you go along. Don’t leave the lab until you have plotted the data that you 
took that day.  Don’t wait until the day before the assignment is due to begin 
your analysis, or it may be too late to correct mistakes.   

 
 
1.4 Notebook guidelines 
 
Presented below is a list of specific guidelines on how to document your experiments. The 
guidelines serve a dual purpose. First, they outline some of the criteria which will be used in 
evaluating your performance in this course. Second, and more important, these guidelines 
will help you to develop good laboratory habits, which can save you time and ensure that you 
have an accurate and useful record of your work.  
 
In order to help these guidelines ‘come to life’ we include an example of a laboratory 
notebook in Section 1.5. The important points are summarized in the Laboratory Notebook 
Checklist, Section 1.6. 
 
 

• Title page: The front cover of your notebook should show your name, the title of the 
experiment and the name of your lab partner. (See example notebook  cover page) 

 
• Index:  An index can be very useful when it comes time to prepare some sort of 

formal communication based on your work (e.g. a publication, poster, seminar, etc).  
It can save you a lot of time when you want to find key results, particularly if the 
research extends over a long period of time and fills many pages of a notebook.   

 
• Purpose: State clearly (but briefly) at the beginning what the experiment is about and 

what you expect to achieve.  This might be phrased in the form of a hypothesis (e.g. 
“We expect the period of a simple pendulum to vary as the square root of the 
length.”) or as a specific goal (e.g. “to measure the speed of light”). 
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• Theory:  The important physics underlying the experiment must be shown in 

equation form, with all of the symbols defined.  You do not need to include a 
complete derivation of the theory.  In most cases it is sufficient to show the key 
equation which motivates the experiment. 

 
• Method:  Include a brief explanation of what kind of measurements you will make 

and what sort of analysis will be done to obtain the final results.  It may be a matter of 
style, whether you want to describe the method separately, or combine it with the 
diagram of the apparatus.   

 
• Diagram of apparatus:  Show enough detail to make it clear what equipment will be 

used and what measurements will be made.  It’s also a good idea to include 
manufacturer and model numbers of commercially made equipment.   The diagram 
can be very schematic in nature.  Use block diagrams with names and model 
numbers.  It is not necessary to spend time creating a photo-realistic rendering of 
what each piece of equipment looks like. 

 
• Dated log entries:  Record the date of each day’s work (and possibly also the time).  

It’s also good practice to focus your thoughts and write a brief outline of the plan for 
the day. 

 
• Data:  Record all of the original data.  Make use of table headings, which include the 

name or symbol of the measured quantity, the units of measurement, and estimates of 
uncertainty. 

 
• Written comments:  Be liberal in writing down your thoughts and qualitative 

observations as you go along.  Written comments can be just as valuable as numbers 
when it comes to interpreting the final results. 

 
• Data analysis (equations):  Every physics equation that you use to analyze your data 

must be written in your notes, with each symbol defined. 
 

• Data analysis (graphs):  Graphs must show the data points with error bars and 
(usually) a computer-generated fit to the data.  The axes of the graph must be labeled 
with the physical quantity and the units.  The title of the graph should be descriptive 
of the purpose of the plot, and not something insultingly obvious, such as “y vs. x” 

 
• Error analysis:  The equations used for error analysis must also be written in your 

notes, with symbols appropriate to the specific situation.  (You do not need to write 
the equations for mean and standard deviation.) 

 
• Final results: summary table and significant digits:  The final results should be 

clearly distinguished from the raw data in your lab notes. The use of summary tables, 
or some creative way of highlighting the key results will help you immensely when it 
comes time to write a report. It is common practice to write a result as the value plus 
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or minus its uncertainty (x ± σx). It is also helpful to record the final result in such a 
way as to make it immediately obvious how closely your measurement agrees with 
the expected value. Thus, a table such as that in table 1.1 (below), which includes the 
expected value, would be most appropriate. 

 
 

Experimental result for g 9.808 ± 0.040 m/s2 
Published value of g for Pittsburgh, PA 9.80118 m/s2 
Comparison (Δ/σ) 0.17 (good agreement) 

 
Table 1.1 Final results for the free-fall experiment (see the sample  
laboratory notebook).  The published value of g is taken from Hugh  
D. Young, University Physics, 8th ed., p.336.  The significance of the 
expression Δ/σ will be discussed in Chapter 2, on Treatment of  
Experimental Errors. 

 
Note that the experimental result in Table 1.1 conforms to the convention, which we 
will adopt in this course, and which is common in professional publications, in regard 
to the number of significant digits to report.  The uncertainty should be rounded off to 
two significant digits.  The result itself should be written in the same format as the 
uncertainty (i.e. same power of ten, if using scientific notation, and same number of 
decimal places).  The uncertainty in the published value of g is at least two orders of 
magnitude smaller than the experimental uncertainty, as implied by the number of 
significant digits.  

 
• Discussion and conclusions:  Write a brief discussion of what you accomplished at 

the end of your notes.  Focus on the key physics of the experiment.  Restate what you 
set out to accomplish.  Did your results support the hypothesis (or agree with a 
previously published result)?  If you made any simplifying assumptions, do your 
results indicate that these were valid assumptions?  If the results did not support the 
hypothesis (or otherwise disagreed with expectations), think carefully and offer a 
plausible explanation for the observed difference. 
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1.5 Example Laboratory Notebook  
 
Cover Page:  Include your name, a descriptive title of the experiment, and your partner’s 
name. 
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Example Laboratory Notebook Page 1:  Index 
An index page is not required, and will not be a grading criterion for this course.  However, 
keeping an index is highly recommended.  An index page can be a great time-saver, when it 
comes to retrieving important information from a long experiment. 
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Example Laboratory Notebook Page 2 (blank) 
Page 2 would have been used to continue the index, if the experiment had been longer. 
(Again, this is a matter of personal style, and not a grading criterion for the course.) 
 

 
 

   10 
 
 



 

 
Example Laboratory Notebook Page 3 
Include a brief statement of the purpose or goal of the experiment, and just enough of the 
theory to motivate the measurements that will be done. 
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Example Laboratory Notebook Page 4 
Include a statement of key assumptions, initial conditions, etc. Also give a brief overview of 
how the measurements will be made, and what analysis will be done with the data. 
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Example Laboratory Notebook Page 5 
A diagram of the apparatus must be included for each part of the experiment.  It need not be a 
photographically accurate representation of all of the equipment.  A schematic, with enough 
information to understand the key components and how the measurements are made, is all 
that is necessary. 
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Example Laboratory Notebook Page 6 
Data must include the name or symbol of the physical quantity, as well as units and 
uncertainty.  The key equations used to analyze the data and the uncertainties must be shown 
algebraically.  Be liberal in the use of written comments, as well as numbers. 
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Example Laboratory Notebook Page 7 
More data of the same type as on Page 6.  The uncertainty on the heights is assumed to be the 
same as the uncertainty on the height for data set 1, and need not be repeated here. 
 

 
 

   15 
 
 



 

Example Laboratory Notebook Page 8 
The key results from the seven data sets are summarized here, with units and uncertainties.  
A Least-Squares fit to the data (plotted on the next page) shows a good fit, with an intercept 
consistent with zero, but a slope which gives a strange result for g. 
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Example Laboratory Notebook Page 9 
A plot of the data from the previous page.  Use of cross-references is always helpful, 
especially if the reference is to information on some page other than the facing page. 
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Example Laboratory Notebook Page 10 
The experimental result for g does not agree with the published value.  The experimenters 
begin to suspect a systematic error associated with their timing device, and prepare to 
perform a calibration routine, to correct the measured times. 
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Example Laboratory Notebook Page 11 
Data for timer calibration. 
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Example Laboratory Notebook Page 12 
Plot of timer calibration results, with cross-reference to data page. 
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Example Laboratory Notebook Page 13 
Results of a Least-Squares fit to the calibration data indicate the need to multiply all of the 
measurements by a constant factor.  Since the calibration scale factor has some uncertainty, 
this will increase the uncertainty in the measured times, as shown by the error propagation 
equation at the bottom of the page. 
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Example Laboratory Notebook Page 14 
The calibration scale factor is applied to the original free-fall time results, and the corrected 
times and uncertainties are shown for each height. 
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Example Laboratory Notebook Page 15 
The free-fall data are replotted, after having been corrected for the timer calibration. 
 
 

 
 
 

   23 
 
 



 

Example Laboratory Notebook Page 16 
A Least-Squares fit to the corrected data gives a value of g in good agreement with the 
published value. 
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Example Laboratory Notebook Page 17 
Discussion and Conclusions:  the last page of notes for this experiment.  The specific 
accomplishment is restated (good agreement with the published value for g).  The original 
assumptions (constant acceleration; neglect air resistance) are revisited, and determined to be 
a valid assumptions. 
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1.6 Laboratory Notebook Checklist 
 
Organizational details:  
Use section headings, such as “Purpose”, “Theory”, “Diagram”, “Data”, etc  
No loose sheets of paper. (Staple or tape each graph onto a blank page.)  
Log entries dated for each day of work  
Purpose:  
State the goal or hypothesis of the experiment.  
Theory:  
Show the key physics equation that motivates the experiment.  
Define all the symbols in the equation.  
Method:  
Describe what measurements will be made and how will the data be analyzed  
Diagram:  
Schematic diagram with components labeled and dimensions indicated  
Original Data:  
All required data recorded by hand in the lab notebook  
Data tables with column headings, units and uncertainties  
Cross-reference to page where data are plotted (if not on the facing page)  
Data Analysis (Graphs):  
Data points clearly visible  
Error bars shown on data points  
“Best Fit” computer-generated line or curve superimposed on data  
Axes labeled with physical quantity and units of measurement  
Descriptive title indicating purpose of the plot (not just “y vs. x”)  
Cross-reference to data page (if the data are not on the immediately facing page)  
Discussion of Fitting Parameters (a±σa , b±σb chi-squared)  
Is the fit good?  (Is the reduced chi-squared approximately equal to one?)  
Is the intercept, a, consistent with the expected intercept?  
Does the slope, b, (or result derived from the slope) agree with prediction?  
Data Analysis (Equations):  
All equations used to analyze the data must be shown, with symbols defined  
Data Analysis (Error propagation):  
Error analysis equations must be shown with appropriate symbols  
Summary Table of Important Final Results  
Round off the uncertainty in each result to two significant digits.  
Write the result in same format (power of ten and decimal places) as uncertainty.  
Show the units (SI system preferred)  
Include the predicted or published value for comparison  
Calculate Δ/σ (difference between experiment and prediction, over uncertainty)  
Discussion/Conclusions  
State clearly whether results agree with predictions, or not.  
Re-state the key physics:  what do your results tell you about the physical system?  
If results do not agree with prediction, give plausible explanation.  
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2 
Treatment of Experimental Errors 

 
 
2.1 Sources of error in measurement 
 
Every quantitative experiment by definition involves the activity of measurement. It is quite 
reasonable to believe that the quantity being measured has some ‘true’ value. However, due 
to the limitations of any measuring device, or technique of measuring, we must admit that we 
do not know with absolute certainty just what the true value is. For example, when using a 
meter stick to measure the amplitude of oscillation of a mass on a spring, the inherent 
precision of the scale, having 1 mm divisions, may be further limited by problems of 
parallax, judgment, etc. Similarly, the precision of a stopwatch used to measure the period of 
oscillation of the same mass-spring system is likely to be limited by the reaction time of the 
person using it. Additional error may be introduced if, for example, the meter stick being 
used had been calibrated at quite a different temperature from that at which the experiment is 
run and is thus no longer the same length due to thermal expansion. Or perhaps the stopwatch 
does not reset all the way back to zero, thus always yielding a measurement which is slightly 
too large. 
 
We begin to see that the experimental errors can be divided into two distinctly different parts. 
Systematic errors result from factors which tend to cause reproducible accuracies, such as 
faulty equipment, calibration, or technique, or recurring fluctuations in the environment, such 
as diurnal temperature variation. Random errors, by contrast, are equally likely to cause the 
results of repeated measurements to be larger or smaller than the true value, and arise due to 
unpredictable factors such as reaction time, random fluctuations in the environmental 
conditions during the course of the experiment, or non-uniformities in the running of 
mechanical parts of the apparatus. 
 
Systematic errors can often be reduced by careful calibration of the equipment before the 
actual experimental measurements are made. Random errors, on the other hand, can never be 
eliminated completely, but can be minimized in two ways that will be explained in more 
detail shortly. 
 
Of course, there are other sorts of error, namely personal error, or outright mistakes. 
However, these will not be treated here except to say that they can usually by avoided by use 
of careful technique and the exercise of common sense. Should they occur anyway, they are 
likely to show up in the analysis stage as outliers: data points which are far from the 
predicted curve in comparison to other similar measurements. 
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2.2 Random errors and the normal probability distribution 
 
In order to gain a better understanding of the nature of random errors and ways of 
minimizing the experimental uncertainty in a measured quantity, we need to define some 
terms. 
 
Given a set of N measurements, xi (i = 1, 2, …, N) of a quantity x, the mean or average value 
of the set is defined as: 
 
 

∑
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The standard deviation of the distribution is defined as: 
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The standard deviation σ of a distribution of measurements is an estimate of the random error 
associated with each individual measurement, that is, the typical error that you would expect 
if you were to make just one measurement. In other words we can identify it as an estimate of 
the uncertainty associated with a single measurement. The magnitude of σ depends upon 
the precision of your experimental apparatus, and on the extent to which you are able to 
control the conditions of the experiment. 
 
 
Using the Dart Game experiment as an example, we plot the measured quantity x on the 
horizontal axis in figure 2.1. Let us divide the scale of x into small, equal intervals Δx, called 
bins. The choice of bin size is somewhat arbitrary. In figure 2.1 we chose Δx = 1, since each 
dart throw was assigned an integer number. On the vertical axis, we plot the number n of 
values of x which belong to the given bin. This graph is called a histogram. 
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Figure 2.1: Histograms of the x-coordinate of darts thrown at a target 
centered at x = 10. A total of 80 darts were thrown by (a) a fairly skilled dart 
thrower, and (b) a not-nearly-so-skilled-as-the-dart-thrower-in-(a) dart 
thrower. 

 
When the total number of data in the set N, obeys N >> 1, the resulting histogram may start 
to look smooth, and sometimes approximates the so-called normal distribution curve (also 
called a Gaussian distribution or Bell curve).  This distribution is defined by: 
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The factor in front of the exponent is chosen in such a way that, if you integrate this 
expression over all the possible values of x, the result is the total number of measurements N. 
It is an empirical fact that the normal distribution curve is often a good representation of the 
random errors associated with measurements, and it is widely used for this reason. 
 
To use equation 2.3, first calculate the mean x , and the standard deviation σ for your set of 
measurements according to equations 2.1 and 2.2. Next, you choose a suitable bin size Δx. In 
our example of the darts experiment, the logical choice of bin size is Δx = 1, since the target 
is divided into columns labeled with successive integers. Having already plotted a histogram 
of your data showing the actual number of times a measurement occurred in each bin, you 
can calculate the expected number of measurements in each bin as predicted by equation 2.3, 
using your values of x  and σ. Finally, plot these calculated values for n(x) on the same graph 
as the histogram to see how well your actual distribution of measurements can be described 
by the normal probability distribution. The normal distribution is not necessarily the correct 
probability distribution for a given experiment, but it is often a reasonable approximation of 
that distribution. 
 
 
2.3 Random errors on the mean 
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In the preceding section we considered a set  of N measured values of the 
quantity x. The mean value over this set was called 

Ni xxxx ,...,,...,, 21

x . Suppose that we repeat the 
measurements, obtaining N' different sets, each consisting of N measured values. We label 
these sets by the subscript j = 1,2,…,N'. This means jx  over each of these N' sets will usually 
differ from each other. In other words, the mean over a set of measurements is affected by 
random error. By analogy with what we did for individual measurements in the last section, 
we can plot the various means jx  on a histogram. Also, we can define the mean of means 

x : 
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and the standard deviation of the mean Mσ : 
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The standard deviation of the mean Mσ  is an estimate of the random error associated with 
the mean of a particular set of measurements, that is, the typical error that you would expect 
if you were to make just one set of N measurements and take the mean. In other words, we 
can identify it as an estimate of the uncertainty associated with the mean. 
 
Probability theory can show that, provided N >> 1, 
 

NM
σσ =              2.6 

 
From equation 2.6 we can see why it is advantageous to average over as many data as 
possible. 
 
It is important always to make clear to which quantity each standard deviation applies. If we 
consider any single measurement of a quantity x, then σ represents an estimate of the 
uncertainty associated with that single measurement. If we consider the mean value x  of 
N measurements of x, then σM represents an estimate of the uncertainty associated with 
that mean value. It is good practice to always use subscripts to distinguish between the 
different standard deviations and to indicate to which value they apply. 
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2.4 Setting an upper bound when the random error is too small to measure 
 
There may be occasions when the fluctuations in a measured quantity due to a random error 
are too small to be detected by your measuring device. If it happens that every repeated 
measurement yields exactly the same result, how do you estimate the experimental error in 
your measurement? In such instances, it would appear that the only thing that limits your 
determination of the actual value of the quantity being measured is the resolution of the 
measuring device itself. The following are some guidelines for setting an upper bound on the 
errors associated with such measurements. 
 

• An analog scale: When reading an analog scale (e.g. a metric ruler or a moving-coil 
meter, etc.), an upper bound on the random error for a perfectly reproducible 
measurement may be estimated at ±1/2 of the finest division on the scale (or whatever 
fraction you consider to be reasonable, depending upon the physical size of the 
divisions). 

 
• A digital display: When reading a digital scale, an upper bound on the random error 

associated with a perfectly reproducible reading may be estimated at ±1/2 of the least 
significant digit. 

 
It should be understood, however, that this method overestimates the amount of random 
error. The actual random errors may be smaller. Also remember that there are systematic 
errors, which must be estimated separately. 
 
 
2.5 Errors associated with statistical counting experiments 
 
Finally we consider the error associated with any statistical counting experiment (e.g. the 
counting of events in a radioactive decay experiment).  
 
In probability theory the Poisson distribution is a discrete probability distribution that 
expresses the probability of a number of events occurring in a fixed period of time if these 
events occur with a known average rate, and are independent of the time since the last event, 
as is the case with any spontaneous atomic or nuclear transition. 
 
The error associated with counting events is simply N  where N is the total number of 
events counted. In such cases as these, it is always desirable to allow the experiment to run 
long enough so that N  << N. Errors associated with counting experiments are often 
referred to as statistical errors. 
 
Example: If a sample emits a radioactive particle on average once per minute, and you are 
interested in the number of events occurring in a 16 minute interval, you would expect to 
obtain a count of . 416 ±
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2.6 Reducing experimental uncertainty 
 
As mentioned previously, the standard deviation σ of a set of measurements is fixed by the 
quality and conditions of the experiment. Once again the experiment of throwing darts 
provides a good illustration of this point. See figure 2.1, above. 
 
Note that while each of the histograms in figure 2.1 contain a total of 80 measurements, the 
width of distribution (a) (characterized by the standard deviation σa) is considerably smaller 
than the same for distribution (b). The mean value of distribution (a) is thus a more reliable 
measurement of the true, or ‘target’ value than the mean value of distribution (b). 
 
There are two ways to reduce the effects of random error. The first, and perhaps most 
obvious way is to obtain more precise equipment and/or to improve your technique of 
measurement. The effect of this is to reduce the standard deviation σ of your 
measurements. The second way, suggested by equation 2.6,  is simply to increase the number 
of repeated measurements N. In this case, there will be no effect on the standard deviation of 
the distribution, but it will reduce the random error on the mean. 
 
 
2.7 The statistical significance of experimental results 
 
We will now discuss the use of the normal probability distribution in determining the 
statistical significance of our results. Again we use the example of the darts experiment. We 
define the absolute difference Δ as the difference between the experimental result and the 
predicted result. 
 
Consider the results of the dart throwing experiment (figure 2.1). The mean value for each set 
of data (equation 2.1) and the corresponding standard deviation of the mean (equation 2.6) 
are displayed below: 
 
 

Experimental Results Predicted Result 
Trial (a) Trial (b) 

10.00 in 10.04 ± 0.30 in 10.42 ± 0.51 in 
 

Table 2.1: Final results for the ‘dart-throwing’ experiment, indicating the 
predicted result and the mean value of N throws with the uncertainty on the 
mean. 

 
Note that in the example above, the results are given with two significant figures in the 
uncertainty, following the convention discussed in section 1.5. 
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Examining table 2.1, we can see that for trial (a) the experimental result differs from the 
predicted result by Δ = 0.04 inches. If we divide this difference by the associated uncertainty 
σ = 0.30 inches, we find that the result is only 0.13 times σ away from the predicted value. 
Similarly, the result for trial (b) is 0.8 times σ away from the predicted value. Both of these 
results are considered to be in good agreement with the predicted value since they both differ 
from the predicted value by less than one σ. In other words, in both cases the predicted value 
lies within the range of uncertainty of the experimental result. 
 
If we use xpred to indicate the predicted value of the quantity x, and σ to indicate the 
uncertainty in an experimental measurement, we can write an expression for the probability 
of obtaining an experimental value in the interval x to x+dx (assuming the distribution is 
Gaussian and centered on the predicted value): 

( )
( )

dxexP
predxx

2

2

2

2
1 σ

πσ

−

=            2.7 

 
Given that an experimental result differs from the predicted value by a certain number times 
σ, the question arises, “How do I decide whether or not my experimental result is in 
agreement with the predicted value?” Unfortunately there is no well-established answer to 
this question. However, equation 2.7 can be used to provide a statistical answer. 
 
Suppose, for example, that your experimental result differs from the predicted value by one σ 
or less. The probability of obtaining a result which differs from the predicted value by not 
more than one σ is found by integrating equation 2.7 from xpred - σ to xpred + σ. (Fortunately 
standard math tables1 are available which eliminate the need to do the integral.)1 

( )
68269.0

2
1 2
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2 ≈∫
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predx

x

xx

dxe           2.8 

 
This indicates a probability of approximately 0.68 of obtaining a result which differs from 
the predicted value by one σ or less. To put it somewhat differently, if you were to repeat the 
experiment, there is a 32% chance that your result would differ from the predicted result by 
one σ or more. 
 
Similarly, the probability of obtaining a result which differs from the predicted value by not 
more than two σ is found by integrating equation 2.7 from xpred - 2σ to xpred + 2σ: 
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xx
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which indicates less than a 5% chance of missing the predicted value by more than 2σ.  
 

                                                 
1 See, for example, Table C2 in Philip R. Bevington and D. Keith Robinson, Data Reduction and Error Analysis 
for the Physical Sciences 3rd edition, McGraw-Hill, 2003 
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And the integral of equation 2.7 from μ - 3σM  to μ + 3σM : 
 
 

    
( )
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xx
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indicates a probability of only 0.3% of missing the predicted value by more than 3σ. 
 
We can make use of this information to establish a convention for deciding how well a 
measurement agrees with the predicted result: 
 

1. Subtract your experimental result from the predicted result 
2. Divide the difference by the uncertainty2 

 

yuncertaint
result predicted -result  alexperiment

=
Δ
σ

       2.11 

 
3. Consult table 2.2 

 
 

=
Δ
σ

 
 
then the agreement is … 

  
1 or less good 

between 1 and 2  fair 
between 2 and 3  marginal 

3  or more poor 
 

Table 2.2: A convention for establishing agreement between experimental 
and predicted results. 

 

Note that the probability of obtaining a 
σ
Δ  of 3 or more is only 0.3%. According to our 

convention this is unlikely enough to indicate a problem. There are three possibilities: 
 

1. The predicted value is wrong. 
2. Your experimental measurements are suffering from systematic error. 
3. You have underestimated your uncertainty. 

 

                                                 
2 This is the uncertainty associated with Δ. See section 2.8 to determine how to propagate the uncertainty 
associated with the experimental result and the uncertainty associated with the predicted result. 
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2.8 Propagation of Uncertainties 
 
Most experimental work involves the calculation of the final result from two or more 
measured quantities. Thus it is necessary not only to determine the experimental uncertainty 
associated with the measured quantities but also to determine the experimental uncertainty 
associated with the final result.  
 
We often perform measurements in which the results depend on several measured inputs,  
where these inputs may be measured with different precision. We want to know how the  
uncertainties on the measured quantities affect the uncertainty on our ultimate result.  
 
First, let us consider a single measurement and the trial case where our result is the directly 
measured quantity. For example, say we wish to know the diameter of the base of a cylinder 
and we directly measure this diameter to obtain dd σ± . Clearly the uncertainty in our result R
is simply the uncertainty associated with our measurement: 

 

 
    dR dR σσ ±=±           2.12 
 
Now let us consider a result that depends upon a function of our measured quantity. For 
example, say we wish to know the area of the base of the cylinder. 
 

2

2
⎟
⎠
⎞

⎜
⎝
⎛=

dA π            2.13 

 
In general, if the result is a function of our measured quantity, then the uncertainty in the 
result is the derivative of the result R with respect to the measurement m times the measured 
uncertainty.  
 

     tmeasuremen
m

result dm
dR σσ ×=          2.14  

 
For our example, the uncertainty in the area is determined by taking the derivative of A 
(equation 2.13) with respect to d, and multiplying by the uncertainty in diameter, so that 
 
    AR AR σσ ±=±  
 

where    dA
d σπσ ×=
2

           2.15 
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We now get to the situation where more than one measured quantity can affect our result. 
Suppose we wish to find the volume of the cylinder. 
 

    hdV
2

2
⎟
⎠
⎞

⎜
⎝
⎛= π            2.16 

 
Clearly our derivative formula is still relevant, but we need to find a way to add them 
together. In the case where the measurements are independent (they do not depend on each 
other), it can be shown that we can add the uncertainties with a "Pythagorean Theorem" like 
sum.  
 
In general, given measured quantities A, B,… with known uncertainties σA,  σA,… 
respectively, if a result R is calculated as some general function f(A, B, …) of the measured 
quantities: R = f(A, B, …), then the uncertainty on R, σR, is: 
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where the ∂  symbol indicates the partial derivative of the function taken only with respect to 
one variable and treating the other variable(s) temporarily as being constant. 
 
For our example, the result clearly depends on two independent measurements: the diameter 
of the base dd σ± , and the height of the cylinder hh σ± . 
 
The uncertainty in the volume is then determined by taking the partial derivative of V 
(equation 2.16) with respect to d, and with respect to h, and combining them according to 
equation 2.17, so that 
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A Consistency Check 
 
Just to reassure you that the rule for propagation of uncertainties is consistent with our 
discussion of mean, standard deviation and uncertainty on the mean, consider the uncertainty 
associated with the mean value of a distribution of measurements Ai, each of which has some 
experimental uncertainty σAi. The mean is given by: 
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1            2.19 

 
We may obtain the uncertainty on A  by applying the general rule for propagation of 
uncertainties (equation 2.17): 
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If all of the individual σAi are the same, that is, if we have the same experimental uncertainty 
on each of the individual measurements (which is the case if we take the standard deviation 
to be the typical error on a single measurement), then we are left with: 
 

( )
N

N
N

A
AA

σ
σσ == 2

1
21          2.21 

 
Thus, if the standard deviation σA of a set of measurements of the quantity A is taken to be 
the typical uncertainty associated with making any single measurement of A, then, by 
applying the rule for the propagation of uncertainties, we find that the propagated error 
associated with the mean value A  is NAA σσ = , which is identical to the uncertainty on 
the mean given by equation 2.6. 
 
As an exercise: Some commonly used examples of error propagation calculations are 
summarized on the next page. Derive the result for each of these examples by applying the 
general rule for the propagation of uncertainties (equation 2.17). 
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2.9 Summary of rules for propagating uncertainties 
 
Given measured quantities A, B, … with associated random uncertainties σA, σB, … 
respectively, i.e. AA σ± , BB σ± , …: 
 
General Function of One Variable: 

(    If )AfC =  then  AC dA
df σσ =  

Examples: 
Multiply by a constant: If nAC =  then  AC nσσ =  

A Power:   If  then  mAC = AC A
Cm σσ =  

Logarithm:   If )ln(AC =  then  AC A
σσ 1

=  

Inverse sine function: If ( )AC 1sin −=  then  AC
A

σσ
21

1

−
=  

Inverse tangent function: If ( )AC 1tan −=  then  AC A
σσ 21

1
+

=  

 
General Function of Two or more Variables: 
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where the ∂  symbol indicates the partial derivative of the function with respect to 
one variable only (the other variables being treated temporarily as constants). 

 
Examples: 
Sum:   If BAC +=  then  22

BAC σσσ +=  
 
Difference:  If BAC −=  then  22

BAC σσσ +=  
 

Product:  If BAC ×=  then  
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Note: The above rules hold only if the uncertainties on A, B, etc. are uncorrelated. That is, 
the deviation of B from its true value is random and independent of the deviation of A from 
its true value during the same measurement. 
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3 
Fitting a Straight Line to a Set of Data by the Method of Least Squares 

 
 
3.1 Introduction 
 
In many of the experiments in this course you will discover a linear relationship between to 
physical quantities. Such a relationship may be written, in general as 
 

bxay +=              3.1 
 
According to equation 3.1, a graph of y versus x yields a straight line with intercept a and 
slope b. One of the goals of the experiment may be to determine a third physical quantity 
which is related somehow to the slope b of the plot of y vs. x. The approach is to make 
measurements of the quantities y and x, plot a graph of the data, and then find the best 
possible straight-line relationship between these two quantities. A standard technique for 
finding the best fit to the data is the method of least squares. The name of the technique 
derives from the process of minimizing the sum of the squares of deviations between the 
actual data and the function which fits the data. The rationale for this process can be 
developed as follows. 
 
3.2 The idea of least square fitting: Maximizing likelihood, minimizing χ2 
 
Suppose you have made a set of measurements },{ iii yx σ± , and would like to discover the 
function f(x), which correctly describes the physical relationship between y and x. (Although 
the technique can be generalized to include the uncertainty in the quantity x, we have 
assumed, for the sake of simplicity, that it can be neglected.) If the measurements are 
distributed according to a Gaussian distribution, the probability pi of obtaining any individual 
measurement yi is: 
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The probability P of obtaining the entire set of measurements is found by multiplying the 
individual probabilities given by equation 3.2: 
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Without the factor of 2 in the denominator of the exponent, equation 3.3 defines the so-called 
likelihood function: 
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The objective of any fitting process is to find the function f(x) which maximizes the 
likelihood that the data are described by that function. 
 
The exponentiated sum in equation 3.4 is given the name χ2 (chi-square): 
 

( )( )
2

2
2

i

ii xfy
σ
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=             3.5 

 
Clearly, maximizing the likelihood L is equivalent to minimizing χ2. In general this must be 
done numerically. The standard approach involves an iterative process of guessing values for 
the parameters in the function f(x), and calculating χ2 until a minimum is found. The 
uncertainty in each one of the parameters is found by varying each parameter away from the 
best fit value, while re-optimizing all the other parameters in the fitting function, until the 
value of χ2 increases by 1. 
 
For the special case of a linear function, as given by equation 3.1, the parameters a and b, 
which minimize χ2, as well as the uncertainties in these parameters, can be calculated 
directly3. The solution is obtained in a straightforward way by taking partial derivatives of 
equation 3.5 with respect to the parameters a and b, setting these two derivatives equal to 
zero, and solving the pair of simultaneous equations. 
 
 
3.3 Goodness of fit and the reduced χ2 
 
Recall from the discussion of the Gaussian distribution in chapter 2, that the standard 
deviation σ represents the typical difference between a measurement and the expected value. 
An examination of equation 3.5 suggests that the value of χ2 should be approximately equal 
to the number of data points N, since it is just the sum of N terms, each of which is expected 
to be approximately equal to 1. However, if you recognize that a straight line provides an 
exact fit to any two data points (i.e. the deviations between each of the points and the line are 
identically zero), and a second order polynomial provides an exact fit to any three data 
points, etc., you might begin to suspect that the value of χ2 is likely to be somewhat less than 
the number of data points for a good fit. We can define the number of degrees of freedom υ 
to be the number of data points N less the number of parameters p in the fitting function: 
 
    pN −=ν              3.6 
 
The expected value of χ2 is just the number of degrees of freedom υ. Assuming that the 
uncertainties σi on the individual data points have been measured properly, we can judge the 
goodness of fit by calculating the reduced χ2. That is, χ2 divided by the number of degrees of 
freedom. A good fit should have a reduced χ2 of approximately 1. 
 
 

                                                 
3 See, for example, Chapter 6 in Philip R. Bevington and D. Keith Robinson, Data Reduction and Error 
Analysis for the Physical Sciences 3rd edition, McGraw-Hill, 2003 
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3.4 Determining the best fit parameters using the least squares fitting program 
 
In this course, most of the labor of minimizing χ2 is done by means of a computer program, 
called LSF (Least Squares Fit). LSF is a Microsoft Excel workbook, written by Yi-Kuang 
Liu for the undergraduate physics laboratories (March 1997), and available on all the 
computers in the labs computer cluster. The basics for using this program are as follows: 
 

• The user enters the set of measurements { }yx yx σσ ±± ,  in four columns labeled X, 

Xerr, Y, Yerr. If the uncertainties in the x quantity are zero, or negligible, they may be 
omitted. 

 
• When all of the data have been entered, the user clicks one of two options: Yerr only, 

or X and Yerr, depending on whether or not the uncertainty in the x quantity is to be 
included in the calculation. 

 
• The results of the fit are five important pieces of information: the best fit intercept a, 

and the uncertainty on a, the best fit slope b, and the uncertainty on b, and the value 
of the reduced χ2 (which is labeled as “Chisq/Nd” in the output). The results will 
appear in a table in the following format: 

 
 

Y=a+b*x  
a=  
b=  

aerr=  
berr=  

ChiSqr/Nd  
 

• It is essential that you record all five pieces of information in your lab notebook each 
time you do a fit with the program. 

 
You will receive specific training in the use of this program as part of the course. Additional 
discussion of least squares fitting and exercises involving χ2 may be provided at the 
discretion of the instructor. 

   41 
 
 



 

4 
Reporting the Results 

 
It is appropriate occasionally to do an experiment simply to satisfy one’s own curiosity. 
However, the majority of scientific research should be done in order to contribute to the body 
of knowledge in the field. This necessarily requires communication of the results in some 
form, usually written (for publication in a professional journal), or in a more visual format 
(for presentation as a poster in a seminar or conference). 
 
In a laboratory course, the chief aim of a report is not to show your instructor that you have 
covered the material and understood it, nor is it to see how well you can repeat known 
information from some reference. Rather it is to present in a thoroughly convincing and clear 
fashion the nature of your experiment and what can be concluded from the actual 
experimental observations. Most often, the report of a professional researcher is presented to 
one’s peers. As you prepare your report, keep in mind that you are not writing a textbook on 
the subject (i.e. keep the report brief and to the point), nor are you writing to impress your 
instructor. Write or speak as you would in order to explain the result to your peers. 
 
The internal organization of a report is not bound by any fixed rules, but will naturally vary, 
depending both on the style of the author and the experiment itself. However, one important 
point which applies to both written and oral reports is worth stating as a rule: 
 
The report must stand on its own as a complete description of the experiment and the 
result. 
 
It is not acceptable to ever write in a report, “See the lab notebook for details.” All important 
figures, graphs, and numerical results (except for raw data) must be reproduced in the report 
itself. 
 
4.1 The Elements of a Formal Written Report 
 
The report which you submit should emphasize what you have done in your experiment. The 
most vital part of your report is the analysis of your results and the conclusions that you draw 
from them. The report should not include an exhaustive discussion of the theory, rather, you 
should include just enough theoretical background information (I.e. discussion of the 
equations relevant to you experiment) for the reader to be able to understand the physical 
system which you have investigated.  
 
Remember that clear organization, complete sentences, good grammar, and spelling are 
required. In short, good English usage is essential to a good report. The following is a generic 
outline for a formal written report. 
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Title Page 
 
The choice of format is left to the student. However, the following items must be included: 
title, author, date, and partner’s name. 
 
Abstract 
 
The abstract is intended to capture the attention of the reader and to convince him/her that the 
rest of the report is worth reading. You should begin with a one or two word sentence 
description of the physical system which you investigated. Then state in another sentence or 
two what important measurements had to be made. Finally, in two or three sentences, state 
the key results and the conclusions that you were able to draw from them. 
 
Since this is a course in experimentation, you should emphasize what you have discovered 
about the behavior of the real physical system that you studied. You should not include 
details of the theory in the abstract. However, it is appropriate to comment on how well your 
results agreed with the theory or with previously published results. 
 
Your goal in writing an abstract is to be as informative, yet as brief as possible. Two 
sentences would be insufficient to convey the important information, while half a typewritten 
page is probably too long. For experiments in this course, one paragraph (150 words or less) 
should be enough to capture the essence of what you accomplished. 
 

Dos and Don’ts for writing an abstract 
 

• Do emphasize the important physics of the experiment. 
• Use words, rather than equations. 
• Do tell whether or not your result supports accepted theory or a previously published 

result. 
 

• Do not include details of procedure, except to convey the essence of what you did. 
• Do not refer to your work as “this lab.”  (That’s so high school.) 
• In general, do not include numerical results in an abstract (unless the entire 

experiment leads to just one single numerical result). 
 
Body of the Report 
 
The organization of the main body of the report is flexible, but it should contain the 
following sections: 
 

I. Introduction (What is the motivation for doing the experiment?) 
II. Apparatus and Procedure (How did you make the measurements?) 
III. Analysis (What did you do with the raw data to get the results?) 
IV. Results (Summarize and discuss the important final results.) 
V. Conclusions (What did you learn about the physical system?) 
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Next we will discuss the various parts of the body of the report in greater detail. Keep in 
mind that the most interesting and vital parts of the report are the last two items above: What 
are the results and what do they mean? The rest of the report should lead up to this. 
 

I. Introduction 
 
This section should make it clear what the experiment is about. Describe the physical 
system which you are investigating and tell what results you hope to achieve. 
Introduce the important equations which predict the behavior of the system. Each 
equation must be numbered sequentially in the margin of the report so that you can 
refer back to it later as needed.  
 
 
II. Apparatus and Procedure 
 
In this section you describe the experimental setup and tell how the measurements 
were made. But keep in mind that you are not writing an instruction manual. Do 
not tell the reader step-by-step what to do. Rather, describe what you did, using just 
enough detail to get the main points across. Include a carefully drawn schematic 
diagram of the apparatus. The diagram must have a figure number and a brief 
descriptive caption. In the text of the report, you will refer the reader to the figure and 
describe the important function of each piece of apparatus, but do not go into detail 
about how you constructed the apparatus. In other words, put the emphasis on the 
physics of the experiment, and not how the clamps and rods are put together or what 
knobs you have to turn. 
 
In the Introduction section, you told the reader what important measurements had to 
be made and why. In the Apparatus and Procedure section, you must convince the 
reader that your experimental design really does enable you to make these desired 
measurements. 
 
III. Results and Discussion 
 
In the previous section you explained how the raw measurements were made. You 
must now guide the reader convincingly through the process of reducing the raw data 
in order to obtain the final results. 
 
With reference to the equations that you presented in the introduction, you should 
describe to the reader how the data was analyzed. In the example formal report (page 
50) the author references the introduction to show how his measurements (free-fall 
heights and times) are related to his final result (acceleration due to gravity). 
 
You should not include raw data in your report. However important graphs that were 
used to analyze your data must be included (with figure number and brief descriptive 
caption) and must be specifically referenced in the text of the report. Graphs should 
not include such distracting information as slope calculations, written comments 
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(except captions), or annotations from the grader of your lab notebook. Graphs should 
always show error bars and a best-fit line. 
 
Final results are usually presented in a table (with table number and brief descriptive 
caption) showing relevant physical variables, the result, previously published values 
or theoretical predictions, and the level of agreement. Tables must include 
uncertainties and proper units. 
 
The Results section is the climax of your report. This is what the rest of the report has 
been leading up to. Now you are ready to compare your results critically with the 
theory, to support it, or demolish it, or modify it. If you have not already done so 
elsewhere, critically compare the actual experimental conditions with the assumptions 
of the theory. If, for example, the theory assumes no friction, is there anything in your 
experimental results which might indicate that this is a poor assumption? Be as 
specific as possible. 

 
There are two extremes which you should avoid in discussion of your final results. 
The first is giving too little thought to sources of systematic error, and the second is 
dwelling too much on sources of error. If your results generally disagreed with 
predictions, make a serious effort to identify the most likely source of error. Do not 
invoke such ill-defined effects as ‘human error’ or ‘equipment error’ without offering 
any more thoughtful explanation. On the other hand do not make sources of error the 
main focus of your discussion. Be sure to look for such things as internal consistency 
of your results and qualitative agreement with the expected behavior of the system, as 
well as quantitative agreement, and point these out in the discussion. 
 
 
Dos and Don’ts for Result and Discussion 
 

• Do include all relevant graphs 
• Do include uncertainties on all measured values 
• Do include a table of final results 

 
• Do not include raw data 
• Do not include LSF spreadsheets 
• Do not include error propagation formula 
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IV. Conclusions 
 
While the Results section is the real climax of your report, it is important to leave the 
reader with a clear picture of what you have accomplished in your research. In the 
Conclusions section you reiterate (briefly) what you have set out to do, and state how 
well you have succeeded. You should emphasize the things that went right in your 
experiment, while being honest about results which do not agree with predictions. 
This part of the report is an excellent place to show the reader that you have a really 
sound understanding of the experiment you have performed. 
 
 
Miscellaneous items 
 
Two other organizational items remain to be discussed: the references and 
appendices. 
 

• References 
 
In references to literature throughout your report, use consecutively numbered 
footnotes placed in a list at the end of the report. Please follow the style used in 
Physical Review and illustrated below and on page 50 in the example formal 
report. 
 

1. U. Regge and D. Zawischa, Phys. Rev. Lett. 61, 149 (1988) 
2. J. B. Marion, Classical Dynamics (Academic Press, 1970), p. 159. 

 
• Appendices 
 
The purpose of an appendix is to include some information which is relevant to 
the report, but would interrupt the flow of the discussion, or otherwise break up 
the structure and organization of the report. All appendices must actually be 
referred to in the main body of the report by saying, for example, “See Appendix 
A.” It is not appropriate to simply staple a bunch of pages to the end of the report 
as an afterthought and label them as an appendix. The following may be included 
as appendices in a report. 
 

 Any discussion of a small point which is off the main train of thought and 
which cannot be made brief. For example, experiments performed to 
calibrate measurement devices. (See page 53 in the example formal report) 

 
 Long mathematical treatments, if you need them to augment the 

theoretical discussion. 
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A few important details 
 

• In deciding how much or how little to write, assume the reader to be one of 
your intelligent class-mates who has had the same courses which you have 
had except this course. As a general guideline, two pages of written text is too 
short; thirty pages, total, is too long. Approximately ten pages, including the 
most important graphs and drawings is appropriate. 

 
• By the time you write your report, you should have repeated any obviously 

faulty measurements. If you have not done something that is asked for in the 
write-up, go back and get the data you need or give a valid explanation for 
why you couldn’t. 

 
• Every measured and calculated value must be quoted with its uncertainty 

unless a reason is given for not doing so.  
 

• Present final results and comparisons to theoretical predictions or previously 
published values in a table. See, for example, table 1 in the example formal 
report (page 50). Be sure to use the proper number of significant figures 
following the convention discussed in section 1.4. 

 
• Graphs: All graphs should have a figure number, title and brief descriptive 

caption. The title should not be, for example, ‘Position vs. Time’, but should 
indicate the purpose of the plot, for instance, ‘Determination of the Velocity’. 
Choose sensible scales and mark data points clearly with their uncertainties. 
Label plots so that the page has to be turned by at most 90°, and only in the 
clockwise direction. Don’t clutter graphs with calculations; these should be 
done in the text of your report. Always label the axes with the quantity 
measured and with units. 

 
• Keep your laboratory notebook up to date. Doing a careful and thorough 

job of record keeping and analysis in the laboratory as you do the experiment 
may save you hours of work at home in preparing the report. 

 
 
In the next section, an example formal report, based on the example laboratory notebook 
(section 1.5) is presented. 
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4.2 Example Formal Report 
 

Free-Fall:  Determination of the Local Acceleration Due to Gravity 
 

Isaac Gnuton 
Lab Partner:  Janice Keppler 

11 August 2010 
 
 

We present the results of an experiment designed to determine the local 
acceleration due to gravity, g.  Our technique involves dropping a steel ball 
through several measured distances, and measuring the corresponding times of 
fall.  A plot of free-fall distance vs the square of the time yields a straight line, 
whose slope is ½ g.  Our results indicate a value of g = 9.808 ± 0.040 m/s2, 
which is consistent with a previously published value of g for our location.   

 
 
Introduction 
 
According to Newton’s Law of Gravitation, the magnitude of the force, F, between two 
masses, m1 and m2, separated by distance, r, is given by: 
 

2
21

r
mm

GF =   ,     (1) 

 
where G is the universal gravitational constant.  An object in free-fall, near the surface of the 
Earth, will accelerate according to Newton’s 2nd Law of Motion, 
 

mgF =  ,     (2) 
 
where g is the local acceleration due to gravity.  Combining Equations 1 and 2 yields a value 
of g, given by 
 

2
e

e

R
M

Gg =   ,     (3) 

 
where Me and Re are the mass and radius of the Earth, respectively.  According to the 
National Institute of Standards and Technology (NIST) the standard acceleration due to 
gravity, is 9.80665 m/s2. 1 
 
Hidden in Equation 3 are a number of oversimplifying assumptions.  A more careful analysis 
would need to take into account the fact that the Earth is a non-inertial reference frame:  the 
rotation of the Earth on its axis introduces a Coriolis force, which reduces the acceleration 
due to gravity near the equator by about 0.5%, compared to the value of g at the poles. In 
addition, local variations in altitude, and the details of geological formations, could result in 
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differences in g around the globe, even at constant latitude.  This latter effect is more subtle 
than the effect due to the Earth’s rotation, but still measurable with sufficiently sensitive 
equipment.  
 
The purpose of this experiment is to determine the local acceleration due to gravity, g.  Our 
approach is to measure the time required for an object to fall through a measured distance, 
under the influence of the force of gravity.  The general kinematic equation for uniform 
acceleration in one dimension is 
 

2

2
1 attvyy oo ++=  ,     (4) 

 
where yo is the initial position, vo is the initial velocity, a is the acceleration and t is time.  
Since we are free to choose a convenient coordinate system, we will define the initial 
position to be yo = 0 at t = 0, and positive direction to be downward.  Our falling object will 
be released from rest, so we have vo = 0.  Thus, Equation (4) may be simplified to  
 

2

2
1 gty =  .     (5) 

 
A plot of the measured distance of fall, y, as a function of the square of the measured time, t, 
should yield a straight line, whose slope is ½ g. 
 
 
Apparatus and Procedure 
 
A diagram of our free-fall apparatus is shown in Figure 1.  The falling object is a steel ball-
bearing (3/4” diameter, 27.880 ± 0.005 gram mass).  We use a PASCO Model ME-9215A 
digital photogate timer, with Model ME-9207A Free-Fall Adapter to measure the free-fall 
time.  The Free-Fall Adapter consists of two electrical contacts, which start and stop the 
timer. The ball-bearing is initially held in place in one of the contacts:  a spring-loaded 
clamp, which triggers the timer when the ball is released.  The second electrical contact is a 
strike pad, positioned directly below the ball, which stops the timer when the ball falls on it.  
The free-fall height is measured with a meter stick (millimeter divisions), from the bottom of 
the ball (clamped in the first contact) to the top of the strike pad (in its closed position).  The 
resolution of the timer display is set to 0.1 ms.   
 
The PASCO Model ME-9215A timers, as received from the manufacturer, are not always 
well-calibrated.  Prior to making free-fall measurements, we perform a calibration procedure, 
so that we may be reasonably certain that we are reporting correctly measured times.  The 
calibration procedure is described in detail in the Appendix. 
 
For each of several different measured free-fall distances, we make 10 repeated 
measurements of the free-fall time.  The distance is plotted against the square of the mean 
free-fall time, according to Eq. 5. 
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Results and Discussion 
 
According to Eq. 5, a plot of the free-fall height versus the square of the time should yield a 
straight line through the origin, with a slope equal to ½ g.  Figure 2 is a plot of our free-fall 
data.  The times have been adjusted according to the timer calibration equation, as described 
in the Appendix. A linear least-squares fit to this set of data yields a reduced χ2 of 0.31, 
which indicates a good fit.  The y-intercept is  - 0.0016 ± 0.0049 m, which is consistent with 
zero. The slope of this plot is 4.904 ± 0.020 m/s2.   
 
Our experimental value for the acceleration due to gravity, g, derived from the slope of the 
plot in Fig. 2., is shown in Table I. This value is in good agreement with a previously 
published value of g = 9.80118 m/s2 for our specific location (Pittsburgh, PA).2  
 

Experimental result Published Value Difference over uncertainty 
9.808 ± 0.040 m/s2 9.80118 m/s2 0.17 

 
Table I.  Acceleration Due to Gravity in Pittsburgh, PA 

The difference between our experimental result and the published value, 
divided by the uncertainty on the difference, is less than 1, which indicates 
good agreement. 

 
Conclusions 
 
We have measured the local acceleration due to gravity with a precision of better than one 
half of one percent.  However, this is not sufficiently precise to discern such subtle effects on 
g as the rotation of the Earth and altitude above sea level.  Although the value of g is 
measurably different at various places around the world, the range of published values of g 
(from 9.782 m/s2 near the equator to 9.825 m/s2 near the pole m/s2)2 is entirely encompassed 
by our margin of uncertainty.  Nevertheless, our result of g = 9.808 ± 0.040 m/s2 is in good 
agreement with the published value for Pittsburgh, PA, and with the standard acceleration 
due to gravity.   
 
 
References 
 
1.  http://physics.nist.gov/cgi-bin/cuu/Value?gn|search_for=gravity 
2.  Hugh D. Young, University Physics, 8th Ed. (Addison Wesley, 1992) p. 336. 
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Figure 1.  Free-Fall Apparatus 
Steel ball-bearing is clamped in Contact 1.  Free-fall height, y, is measured 
from bottom of ball to top of Contact 2 (in closed position).  Timer starts 
when ball is released.  Timer stops when ball strikes and closes Contact 2 
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Figure 2. 
Determination of local acceleration due to gravity, g, from free-fall data. 
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APPENDIX 
Calibration of the PASCO ME-9215A Photogate Timer 

 
The PASCO Model ME-9215A Photogate Timers are not always well-calibrated, as received 
from the manufacturer.  Possible problems with the timer circuitry include a triggering delay, 
which may be different for the start pulse, compared to the stop pulse, resulting in a constant 
offset in time, and a quartz oscillator which may be running too fast or too slow. We will 
assume that these hypothetical calibration problems can be corrected by a linear adjustment, 
given by 
 

measuredcalibrated btat +=   ,   (A-1) 
 
where the intercept, a, is a constant offset in time, and b is a calibration scale factor.  If the 
timer is well-calibrated, we should find a = 0 and b = 1. 
 
To test the calibration of our timer, we use a setup shown in Figure A-1.  We drive a 
mechanical oscillator (PASCO SF-9324) with the output from a well-calibrated digital sine 
wave generator (Stanford Research Systems DS335).  An opaque obstacle, attached to the 
mechanical oscillator, moves up and down, interrupting the infrared beam of the Photogate 
Timer, at a frequency, f, displayed on the DS335 function generator.  By definition, the 
period of oscillation of the obstacle is the reciprocal of the frequency.  Thus, the calibration-
standard time is given by 
 

f
tcalibrated

1
=   ,   (A-2) 

 
We make 10 repeated measurements of the period of oscillation with the photogate timer, at 
each of eight different frequencies, from 1.25 Hz to 3.00 Hz, in increments of 0.25 Hz.  Over 
this range, the uncertainty on the frequency is ± 0.000001 Hz.  The mean of the 10 
measurements with the photogate is tmeasured. 
 
Figure A-2 is a plot of the calibration-standard time versus the measured time.  A least-
squares fit to the data yields a good fit (reduced χ2 of 0.34) with a slope b = 1.13520 ± 
0.00088 and an intercept of a = -0.00018 ± 0.00034 s.  Although the intercept is consistent 
with zero, the slope clearly indicates that the timer is running too slow:  the measured times 
need to be multiplied by a scale factor, which is greater than 1.  Thus, in the final analysis, all 
of our times, measured with this particular photogate, must be adjusted according to  
 

measuredcalibrated tt ⋅= 1352.1   ,   (A-3) 
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Figure A-2. 
Calibration of ME-9215A Photogate Timer 
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4.3 Formal Report Checklist 
 
The purpose of a formal report is to communicate the results of our work to an appropriate 
audience. Your goal is to persuade the audience that your experiment was well thought out 
and that your conclusions are supported by the results. The basic guidelines for doing this are 
summarized below. Your formal report must include … 
 
Abstract: A paragraph (or at most two) at the beginning of the report which 
conveys the essence and significance of your work. This is not an 
introduction, and there should be few details of procedure, if any. The abstract 
is intended to capture the attention of the audience and to persuade them that 
the rest of the report is worth their time. 
 
Good organization: Divide the text of the report into numbered sections with 
heading as indicated below. The abstract is not numbered, but rather stands by 
itself after the title of the report. Important equations must be numbered in the 
margin. Each figure and table must be numbered in the same order in which 
you refer to it in the text of the report. 
 

I. Introduction: Describe the physics behind the experiment, explain 
what quantities must be measured and tell what information you 
will obtain from the data. 

 
II. Apparatus and Procedure: Include just enough detail to explain 

how the measurements were made, but not a cookbook list of 
instructions. A carefully drawn schematic diagram of the apparatus 
(with figure number and descriptive caption) is an essential part of 
this section. 

 
III. Results and Discussion: Explain how you made use of graphs 

and/or key equations to obtain the final results from the raw data. 
Every graph must have a figure number and a caption! Summarize 
your final results, including uncertainties and predicted values for 
comparison. Discuss the agreement or disagreement and any likely 
sources of systematic error which were not taken into 
consideration in the analysis. Results must have proper units and 
the correct number of significant figures. 

 
IV. Conclusions: Summarize what you have learned about the 

behavior of the physical system. Make sure that your conclusions 
are supported by the results. This section gives the audience their 
final impression of your work. 

 
 
Remember to proof-read your report to be sure that it includes everything you intended. 
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